
ReactJS

Course Title: Mastering ReactJS for Modern Web Development

Objective:

 To introduce students to the fundamental and advanced concepts of ReactJS, a popular

JavaScript library for building modern, dynamic user interfaces.

 To provide hands-on experience in developing scalable and maintainable web applications

using ReactJS.

 To equip students with the skills needed to integrate React with backend services, manage

application state, and optimize performance.

 To enable students to become proficient in using ReactJS in real-world projects and prepare

them for job opportunities in front-end development.

Introduction:

ReactJS is a JavaScript library for building user interfaces, developed by Facebook. It is used

to create interactive UIs by efficiently updating and rendering the right components when

data changes. React’s component-based architecture allows for modular, reusable, and

maintainable code, which is why it has become one of the most popular libraries for front-end

development in modern web applications.

This course will cover everything from basic React concepts to advanced patterns, and will

include real-world examples, exercises, and projects. By the end of the course, students will

have built several React applications and be able to contribute to production-ready web apps

in a professional setting.

Course Duration : 8 Weeks

Course Outcomes:

By the end of this course, students will be able to:

1. Build Web Applications: Design and build modern, interactive, and scalable web

applications using ReactJS.

2. Work with JSX and Components: Understand and use JSX syntax and React

components to create dynamic interfaces.

3. Manage State Efficiently: Handle component state, manage data flow between

components, and integrate third-party state management tools like Redux.

4. Implement Routing: Use React Router for client-side routing and develop multi-page

applications.

5. Understand React Hooks: Utilize React hooks such as useState, useEffect, and

custom hooks to manage side effects and state.

6. Optimize Performance: Implement performance optimization techniques, including

lazy loading, memoization, and code splitting.

7. Write Unit Tests: Write and execute unit tests for React components using testing

libraries like Jest and React Testing Library.

8. Integrate APIs: Fetch and display data from external APIs in a React app.

9. Work on Projects: Create real-world projects, implement design patterns, and

structure the application properly to build scalable, maintainable applications.

Why Should Students Learn ReactJS?

 In-Demand Skill: ReactJS is one of the most widely used libraries in the industry for

web development. Mastery of React opens up various career opportunities as a front-

end developer, full-stack developer, or UI/UX developer.

 Component-Based Architecture: React’s component-based approach allows

developers to build complex UIs with reusable, modular components, making the

code more organized and maintainable.

 Vibrant Ecosystem: With tools like React Router, Redux, Next.js, and a strong

community around React, developers can rapidly scale their applications and use a

plethora of libraries that integrate seamlessly with React.

 Performance Optimizations: React’s virtual DOM allows for efficient updates,

making React apps faster than traditional server-rendered websites, which is critical

for modern web performance.

 Active Community & Resources: React’s popularity means that it has an active

community, abundant resources, tutorials, and documentation available, making it

easier for students to learn and troubleshoot.

 Job Market: ReactJS skills are highly valued by tech companies, especially for

building Single Page Applications (SPAs) and dynamic UIs. Being proficient in React

is a great way to enhance employability.

Syllabus Details :

Module 1: Introduction to React and JavaScript Refresher

1. Overview of JavaScript ES6+

o Let, const, arrow functions.

o Template literals, destructuring, spread/rest operators.

o Default parameters and shorthand property names.

o Classes and inheritance.

o Promises and async/await.

2. Introduction to React

o What is React? History and core concepts.

o Key features: Component-based architecture, virtual DOM, unidirectional data

flow.

o Understanding the React ecosystem.

3. Setting Up the Development Environment

o Installing Node.js and npm.

o Setting up a React project using create-react-app.

o Project structure and folder organization.

o Running the development server and understanding build scripts.

4. Hello World in React

o Writing your first React component.

o Rendering elements and understanding JSX syntax.

o Introduction to React Developer Tools.

Module 2: React Components and JSX

1. Understanding JSX

o What is JSX and how it compiles to JavaScript.

o Embedding expressions in JSX.

o JSX best practices and pitfalls.

2. Creating and Rendering Components

o Functional components vs. class components.

o Component composition and hierarchy.

o Importing and exporting components.

3. Props and State

o Understanding props and passing data between components.

o Using props to make components reusable.

o Introduction to state and setState (for class components).

o State vs. props and when to use each.

4. Hands-On: Building Simple Components

o Building reusable components like Button, Card, and ListItem.

o Composing components to build a simple UI layout.

Module 3: Working with State and Event Handling

1. State Management in Functional Components with Hooks

o Introduction to the useState hook for managing state in functional

components.

o Setting and updating state using useState.

2. Handling Events in React

o Adding event listeners in React.

o Handling click, submit, and change events.

o Passing arguments to event handlers.

3. Conditional Rendering

o Implementing conditional rendering with if/else, ternary operators, and logical

operators.

o Best practices for conditional rendering in JSX.

4. Lists and Keys

o Rendering lists using the map function.

o Importance of keys and best practices for unique keys.

o Building a dynamic list with add/remove functionality.

Module 4: React Router and Navigation

1. Introduction to React Router

o Setting up React Router.

o Basic routing with BrowserRouter, Route, Switch, and Link.

o Nested routes and passing route parameters.

2. Programmatic Navigation and Redirects

o Navigating programmatically using useNavigate.

o Redirects with Navigate component.

o Protected routes and authentication.

3. Dynamic Routing

o Passing dynamic parameters to routes.

o Accessing route parameters with useParams.

o Building nested routes and using Outlet for sub-pages.

4. Hands-On: Multi-Page Application

o Creating a multi-page app with pages like Home, About, and Contact.

o Using links and navigation between pages.

Module 5: State Management with Hooks and Context API

1. Managing State with useState and useEffect Hooks

o Introduction to useState and useEffect for functional components.

o Implementing lifecycle methods with useEffect.

o Managing component re-renders with dependencies in useEffect.

2. Working with Context API

o Introduction to the Context API for global state management.

o Creating and using context with createContext and useContext.

o Passing global data with Context to nested components.

3. Advanced State with Reducer Hook

o Using useReducer for complex state logic.

o Building a simple reducer and dispatching actions.

o Comparison between useReducer and useState.

4. Hands-On: Building a Global State Management Application

o Creating a theme or authentication context.

o Building an application using multiple contexts.

Module 6: Handling Forms and User Input

1. Controlled vs. Uncontrolled Components

o Understanding controlled components for form handling.

o Handling input fields and form submissions.

o Uncontrolled components and working with refs.

2. Form Validation

o Implementing basic validation for forms.

o Using libraries like Formik and Yup for validation.

o Handling form submission and validation errors.

3. File Uploads

o Building a file upload component.

o Handling file uploads in forms.

o Displaying uploaded images and data handling.

4. Hands-On: Building a Login Form with Validation

o Creating a login form with controlled inputs.

o Validating user input and displaying error messages.

Module 7: Advanced Concepts and Optimizations

1. Error Boundaries

o Understanding error boundaries and error handling in React.

o Implementing error boundaries with class components.

o Handling async errors and try-catch blocks.

2. Performance Optimization Techniques

o Optimizing renders with React.memo, useMemo, and useCallback.

o Virtual DOM and reconciliation process.

o Code-splitting and lazy loading components with React.lazy and

Suspense.

3. Server-Side Rendering (SSR) and Static Site Generation (SSG)

o Introduction to SSR and SSG.

o Overview of Next.js and its features.

o When to choose SSR, SSG, and client-side rendering (CSR).

4. Hands-On: Optimizing a React Application

o Using memoization for optimizing a large list of items.

o Lazy loading routes and components for better performance.

Module 8: Testing React Applications

1. Introduction to Testing Libraries

o Setting up Jest and React Testing Library.

o Writing basic unit tests for React components.

o Understanding assertions and test structure.

2. Testing Components with Jest and React Testing Library

o Testing props, state, and rendered output.

o Mocking functions and simulating events.

o Testing asynchronous code and API calls.

3. End-to-End Testing

o Introduction to Cypress for end-to-end testing.

o Setting up Cypress and writing basic E2E tests.

o Testing user flows and interactions.

4. Hands-On: Writing Tests for a React Application

o Writing unit tests for a form component.

o Testing navigation and user interactions in an application.

Module 9: Integrating APIs and Data Fetching

1. Introduction to Data Fetching with Fetch and Axios

o Making API calls with fetch and Axios.

o Handling responses, errors, and loading states.

o Updating UI based on API responses.

2. Working with Async/Await and useEffect

o Using async/await syntax for API calls in useEffect.

o Managing dependencies in useEffect when fetching data.

o Avoiding memory leaks with cleanup functions.

3. Pagination and Infinite Scroll

o Implementing pagination for large datasets.

o Building an infinite scroll feature.

4. Hands-On: Building a Data-Driven Application

o Fetching data from a public API (e.g., weather, movie).

o Building a responsive interface to display API data.

Module 10: Project and Best Practices

1. Building a Real-World Application

o Planning and structuring a complete project.

o Defining components, state, and data flow.

o Integrating third-party libraries and dependencies.

2. Code Structure and Best Practices

o Organizing folders for scalability.

o Creating reusable and modular components.

o Writing clean, maintainable, and readable code.

3. Styling Techniques in React

o Styling components with CSS modules, Styled Components, and

CSS-in-JS.

o Best practices for component-based styling.

o Theming and responsiveness with media queries.

4. Review, Q&A, and Feedback Session

o Recapping key concepts covered in the syllabus.

o Project review and final feedback.

o Tips and resources for further learning and React career paths.

Career Opportunities after Learning ReactJS

1. Front-End Developer

o Role: Build interactive, dynamic UIs with ReactJS.

o Skills: React, JavaScript, HTML, CSS.

2. Full-Stack Developer

o Role: Work on both front-end (React) and back-end (Node.js, Express).

o Skills: React, Node.js, MongoDB, REST APIs.

3. ReactJS Developer

o Role: Specialized in building React applications.

o Skills: ReactJS, Redux, React Hooks.

4. UI/UX Developer

o Role: Create intuitive, responsive UIs using ReactJS.

o Skills: React, HTML, CSS, UI/UX design tools (e.g., Figma).

5. Mobile App Developer (React Native)

o Role: Build cross-platform mobile apps using React Native.

o Skills: React Native, JavaScript, Mobile UI/UX patterns.

6. Consultant / Freelance Developer

o Role: Work on specific projects or provide React expertise.

o Skills: React, problem-solving, communication.

7. Front-End Architect

o Role: Design and oversee large-scale React applications.

o Skills: ReactJS, architecture design, system scaling.

8. Technical Writer

o Role: Write documentation, tutorials, and guides on React.

o Skills: React knowledge, writing, communication.

