
ReactJS

Course Title: Mastering ReactJS for Modern Web Development

Objective:

 To introduce students to the fundamental and advanced concepts of ReactJS, a popular

JavaScript library for building modern, dynamic user interfaces.

 To provide hands-on experience in developing scalable and maintainable web applications

using ReactJS.

 To equip students with the skills needed to integrate React with backend services, manage

application state, and optimize performance.

 To enable students to become proficient in using ReactJS in real-world projects and prepare

them for job opportunities in front-end development.

Introduction:

ReactJS is a JavaScript library for building user interfaces, developed by Facebook. It is used

to create interactive UIs by efficiently updating and rendering the right components when

data changes. React’s component-based architecture allows for modular, reusable, and

maintainable code, which is why it has become one of the most popular libraries for front-end

development in modern web applications.

This course will cover everything from basic React concepts to advanced patterns, and will

include real-world examples, exercises, and projects. By the end of the course, students will

have built several React applications and be able to contribute to production-ready web apps

in a professional setting.

Course Duration : 8 Weeks

Course Outcomes:

By the end of this course, students will be able to:

1. Build Web Applications: Design and build modern, interactive, and scalable web

applications using ReactJS.

2. Work with JSX and Components: Understand and use JSX syntax and React

components to create dynamic interfaces.

3. Manage State Efficiently: Handle component state, manage data flow between

components, and integrate third-party state management tools like Redux.

4. Implement Routing: Use React Router for client-side routing and develop multi-page

applications.

5. Understand React Hooks: Utilize React hooks such as useState, useEffect, and

custom hooks to manage side effects and state.

6. Optimize Performance: Implement performance optimization techniques, including

lazy loading, memoization, and code splitting.

7. Write Unit Tests: Write and execute unit tests for React components using testing

libraries like Jest and React Testing Library.

8. Integrate APIs: Fetch and display data from external APIs in a React app.

9. Work on Projects: Create real-world projects, implement design patterns, and

structure the application properly to build scalable, maintainable applications.

Why Should Students Learn ReactJS?

 In-Demand Skill: ReactJS is one of the most widely used libraries in the industry for

web development. Mastery of React opens up various career opportunities as a front-

end developer, full-stack developer, or UI/UX developer.

 Component-Based Architecture: React’s component-based approach allows

developers to build complex UIs with reusable, modular components, making the

code more organized and maintainable.

 Vibrant Ecosystem: With tools like React Router, Redux, Next.js, and a strong

community around React, developers can rapidly scale their applications and use a

plethora of libraries that integrate seamlessly with React.

 Performance Optimizations: React’s virtual DOM allows for efficient updates,

making React apps faster than traditional server-rendered websites, which is critical

for modern web performance.

 Active Community & Resources: React’s popularity means that it has an active

community, abundant resources, tutorials, and documentation available, making it

easier for students to learn and troubleshoot.

 Job Market: ReactJS skills are highly valued by tech companies, especially for

building Single Page Applications (SPAs) and dynamic UIs. Being proficient in React

is a great way to enhance employability.

Syllabus Details :

Module 1: Introduction to React and JavaScript Refresher

1. Overview of JavaScript ES6+

o Let, const, arrow functions.

o Template literals, destructuring, spread/rest operators.

o Default parameters and shorthand property names.

o Classes and inheritance.

o Promises and async/await.

2. Introduction to React

o What is React? History and core concepts.

o Key features: Component-based architecture, virtual DOM, unidirectional data

flow.

o Understanding the React ecosystem.

3. Setting Up the Development Environment

o Installing Node.js and npm.

o Setting up a React project using create-react-app.

o Project structure and folder organization.

o Running the development server and understanding build scripts.

4. Hello World in React

o Writing your first React component.

o Rendering elements and understanding JSX syntax.

o Introduction to React Developer Tools.

Module 2: React Components and JSX

1. Understanding JSX

o What is JSX and how it compiles to JavaScript.

o Embedding expressions in JSX.

o JSX best practices and pitfalls.

2. Creating and Rendering Components

o Functional components vs. class components.

o Component composition and hierarchy.

o Importing and exporting components.

3. Props and State

o Understanding props and passing data between components.

o Using props to make components reusable.

o Introduction to state and setState (for class components).

o State vs. props and when to use each.

4. Hands-On: Building Simple Components

o Building reusable components like Button, Card, and ListItem.

o Composing components to build a simple UI layout.

Module 3: Working with State and Event Handling

1. State Management in Functional Components with Hooks

o Introduction to the useState hook for managing state in functional

components.

o Setting and updating state using useState.

2. Handling Events in React

o Adding event listeners in React.

o Handling click, submit, and change events.

o Passing arguments to event handlers.

3. Conditional Rendering

o Implementing conditional rendering with if/else, ternary operators, and logical

operators.

o Best practices for conditional rendering in JSX.

4. Lists and Keys

o Rendering lists using the map function.

o Importance of keys and best practices for unique keys.

o Building a dynamic list with add/remove functionality.

Module 4: React Router and Navigation

1. Introduction to React Router

o Setting up React Router.

o Basic routing with BrowserRouter, Route, Switch, and Link.

o Nested routes and passing route parameters.

2. Programmatic Navigation and Redirects

o Navigating programmatically using useNavigate.

o Redirects with Navigate component.

o Protected routes and authentication.

3. Dynamic Routing

o Passing dynamic parameters to routes.

o Accessing route parameters with useParams.

o Building nested routes and using Outlet for sub-pages.

4. Hands-On: Multi-Page Application

o Creating a multi-page app with pages like Home, About, and Contact.

o Using links and navigation between pages.

Module 5: State Management with Hooks and Context API

1. Managing State with useState and useEffect Hooks

o Introduction to useState and useEffect for functional components.

o Implementing lifecycle methods with useEffect.

o Managing component re-renders with dependencies in useEffect.

2. Working with Context API

o Introduction to the Context API for global state management.

o Creating and using context with createContext and useContext.

o Passing global data with Context to nested components.

3. Advanced State with Reducer Hook

o Using useReducer for complex state logic.

o Building a simple reducer and dispatching actions.

o Comparison between useReducer and useState.

4. Hands-On: Building a Global State Management Application

o Creating a theme or authentication context.

o Building an application using multiple contexts.

Module 6: Handling Forms and User Input

1. Controlled vs. Uncontrolled Components

o Understanding controlled components for form handling.

o Handling input fields and form submissions.

o Uncontrolled components and working with refs.

2. Form Validation

o Implementing basic validation for forms.

o Using libraries like Formik and Yup for validation.

o Handling form submission and validation errors.

3. File Uploads

o Building a file upload component.

o Handling file uploads in forms.

o Displaying uploaded images and data handling.

4. Hands-On: Building a Login Form with Validation

o Creating a login form with controlled inputs.

o Validating user input and displaying error messages.

Module 7: Advanced Concepts and Optimizations

1. Error Boundaries

o Understanding error boundaries and error handling in React.

o Implementing error boundaries with class components.

o Handling async errors and try-catch blocks.

2. Performance Optimization Techniques

o Optimizing renders with React.memo, useMemo, and useCallback.

o Virtual DOM and reconciliation process.

o Code-splitting and lazy loading components with React.lazy and

Suspense.

3. Server-Side Rendering (SSR) and Static Site Generation (SSG)

o Introduction to SSR and SSG.

o Overview of Next.js and its features.

o When to choose SSR, SSG, and client-side rendering (CSR).

4. Hands-On: Optimizing a React Application

o Using memoization for optimizing a large list of items.

o Lazy loading routes and components for better performance.

Module 8: Testing React Applications

1. Introduction to Testing Libraries

o Setting up Jest and React Testing Library.

o Writing basic unit tests for React components.

o Understanding assertions and test structure.

2. Testing Components with Jest and React Testing Library

o Testing props, state, and rendered output.

o Mocking functions and simulating events.

o Testing asynchronous code and API calls.

3. End-to-End Testing

o Introduction to Cypress for end-to-end testing.

o Setting up Cypress and writing basic E2E tests.

o Testing user flows and interactions.

4. Hands-On: Writing Tests for a React Application

o Writing unit tests for a form component.

o Testing navigation and user interactions in an application.

Module 9: Integrating APIs and Data Fetching

1. Introduction to Data Fetching with Fetch and Axios

o Making API calls with fetch and Axios.

o Handling responses, errors, and loading states.

o Updating UI based on API responses.

2. Working with Async/Await and useEffect

o Using async/await syntax for API calls in useEffect.

o Managing dependencies in useEffect when fetching data.

o Avoiding memory leaks with cleanup functions.

3. Pagination and Infinite Scroll

o Implementing pagination for large datasets.

o Building an infinite scroll feature.

4. Hands-On: Building a Data-Driven Application

o Fetching data from a public API (e.g., weather, movie).

o Building a responsive interface to display API data.

Module 10: Project and Best Practices

1. Building a Real-World Application

o Planning and structuring a complete project.

o Defining components, state, and data flow.

o Integrating third-party libraries and dependencies.

2. Code Structure and Best Practices

o Organizing folders for scalability.

o Creating reusable and modular components.

o Writing clean, maintainable, and readable code.

3. Styling Techniques in React

o Styling components with CSS modules, Styled Components, and

CSS-in-JS.

o Best practices for component-based styling.

o Theming and responsiveness with media queries.

4. Review, Q&A, and Feedback Session

o Recapping key concepts covered in the syllabus.

o Project review and final feedback.

o Tips and resources for further learning and React career paths.

Career Opportunities after Learning ReactJS

1. Front-End Developer

o Role: Build interactive, dynamic UIs with ReactJS.

o Skills: React, JavaScript, HTML, CSS.

2. Full-Stack Developer

o Role: Work on both front-end (React) and back-end (Node.js, Express).

o Skills: React, Node.js, MongoDB, REST APIs.

3. ReactJS Developer

o Role: Specialized in building React applications.

o Skills: ReactJS, Redux, React Hooks.

4. UI/UX Developer

o Role: Create intuitive, responsive UIs using ReactJS.

o Skills: React, HTML, CSS, UI/UX design tools (e.g., Figma).

5. Mobile App Developer (React Native)

o Role: Build cross-platform mobile apps using React Native.

o Skills: React Native, JavaScript, Mobile UI/UX patterns.

6. Consultant / Freelance Developer

o Role: Work on specific projects or provide React expertise.

o Skills: React, problem-solving, communication.

7. Front-End Architect

o Role: Design and oversee large-scale React applications.

o Skills: ReactJS, architecture design, system scaling.

8. Technical Writer

o Role: Write documentation, tutorials, and guides on React.

o Skills: React knowledge, writing, communication.

